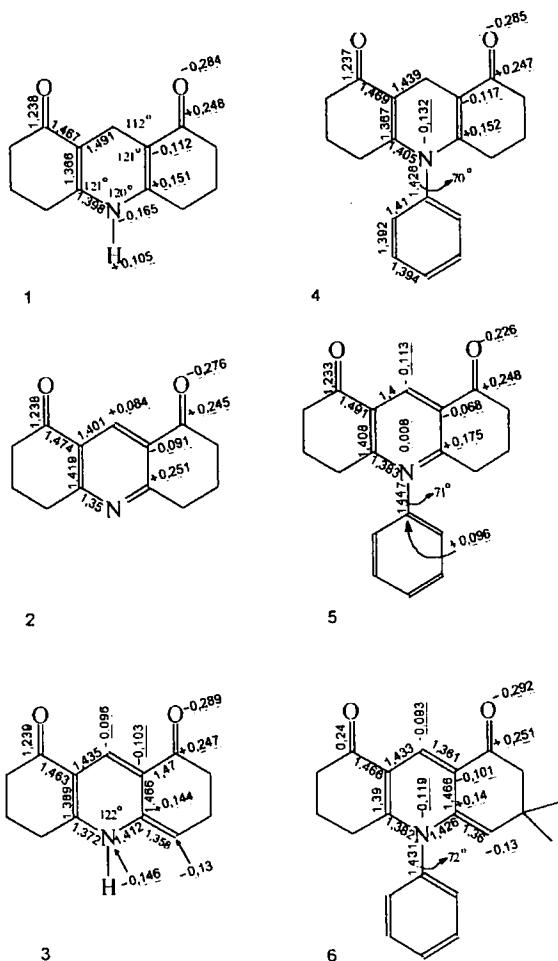

LETTERS TO THE EDITOR

ELECTRONIC STRUCTURE OF DIOXOPOLYHYDROACRIDINES

B. M. Gutsulyak, M. V. Mel'nik, and A. D. Kachkovskii

Reaction of primary aromatic amines, formaldehyde, and dimedone in the presence of mineral acid produces a mixture of 1,8-dioxodecahydroacridines (A) and 1,8-dioxooctahydroacridinium quaternary salts (B) [1]. Symmetric decahydroacridinediones without a substituent at the nitrogen atom have also been prepared by reacting the imine of dimedone with aldehydes in acetic acid [2]. Additional investigations revealed compound A as reaction intermediate which transform into salt B upon longer heating.

Quaternary salt B reacts with bases to produce bright red anhydrobases C, which is also produced from A via oxidation of its alcohol solutions. The transformation occurred according to the following scheme:



The structures of the prepared compounds were studied using IR, UV, and PMR spectra [1]. Therefore, it seemed interesting to investigate the geometry and electronic structures of A, B, and C using quantum-chemical calculations. The effective charges were calculated using the CNDO/2 method. The geometry of compounds was calculated using the AM1 method from the Hyperchem program set [3]. Models without the N-phenyl substituent (1,2,3) and with N-phenyl substituents (4, 5, 6) were calculated in order to reveal the effect of the N-phenyl substituent on the structure. As seen from the diagrams provided, compounds 1, 2, 4, and 5, in contrast with 3 and 6, have symmetric structures.

Effective Charges. The nitrogen atom is characterized by a high negative charge, that is decreased by the N-phenyl substituent. The greatest effect is seen for the compounds of B group. Only for group B does the N-phenyl group affect the charge on the carbon atoms of the pyridine ring. It reduces the negative charges (electron-withdrawing effect). The N-phenyl substituent decreases also the effective charge on the oxygen atom of the carbonyl group (in group B, the N-phenyl substituent has no effect in the other groups).

Ivano-Frankovsk State Technical University of Oil and Gas, Ivano-Frankovsk 284018, Ukraine. Translated from *Khimiya Geterotsiklicheskikh Soedinenii*, No. 7, pp. 997-999, July, 1999. Original article submitted March 9, 1999.

Calculated electron charges and geometry.

Optimized Geometry. Calculations confirm the dihydropyridine structure of compounds A. The bonds N–C_α and C_β–C_γ are lengthened; C_α–C_β is shortened. The N-phenyl substituent has practically no effect. For compound B, the bonds are aromatic with the exception of the N–C_α bond. The N-phenyl substituent evens out the bonds lengths of the pyridine ring.

The structure of the pyridine ring is more complicated for compounds of the C group. These compounds have a $C_\alpha=CH$ group bonded with the pyridine ring. In this instance the shortened and lengthened bonds alternate according to the structure of the anhydروبase C. The N-phenyl substituent has no effect on the bond orders in this system.

The dihydropyridine ring of compounds A is characterized by decreased C_{β} – C_{γ} – $C_{\beta'}$ bond angles (112°) compared with the normal angle for sp^2 -hybridization. Some of the other angles are increased slightly. The pyridine ring of compounds B is planar.

The angle C_α -N- C_α' of anhydrobases C is slightly increased (122°). This suggests that the ring is internally strained. The plane of the N-phenyl substituent for all groups of compounds (A, B, and C) is twisted relative to the pyridine ring by 70 - 72° .

In general, the calculated effective charges and geometry of compounds studied are consistent with the structures previously assigned to them.

REFERENCES

1. M. V. Mel'nik, M. Yu. Kornilov, A. V. Turov, and B. M. Gutsulyak, *Zh. Org. Khim.*, **18**, No. 7, 1460 (1982).
2. A. Ya. Dreimane, E. E. Grinshtein, and E. I. Stankevich, *Khim. Geterotsikl. Soedin.*, No. 6, 791 (1980).
3. *HYPERCHEM* Program Set, Hypercube, inc. (1994).